

A Look Ahead: Energy and Power Aware Job Scheduling and Resource Management

<u>Agenda</u>

•	Quick Intro	Kevin Pedretti	5 min
•	EPA JSRM Overview	Siddhartha Jana	10 min
•	Quick Talks		
	 LRZ (Leibniz Supercomputing Center), Germany 	Michael Ott	10 min
	 Trinity, USA 	Kevin Pedretti	10 min
	 Exascale Computing Project + LLNL, USA 	Tapasya Patki	10 min
•	Open Discussion / Next Steps	Siddhartha Jana	15 min

Focus of this BoF:

State of the Practice: Energy and Power Aware Job Scheduling and Resource Management (EPA-JSRM)

Background of the EPA-JSRM team:

- Sub-team under the Energy Efficient HPC Working Group
- Includes interested members from across the globe
 - HPC Centers/Facilities
 - Researchers
 - Vendors
- Goal: Assess the environmental, computational, and usage drivers motivating power management efforts

Recent work:

- Identify the <u>State of Practice</u> regarding EPA-JSRM
- Survey done in 2016-2017
- Conference papers, white-papers, posters published

Today's Agenda

- Summarize key takeaways from the survey
- Quick talks from sites
- Get feedback from the audience on the next steps and future roadmaps.

References:

- Whitepaper @ SC17: https://eehpcwg.llnl.gov/pages/conf_sc17a.htm
- Research poster @ SC17: https://eehpcwg.llnl.gov/assets/sc17_research_poster.pdf
- InsideHPC article: https://insidehpc.com/2017/12/first-global-survey-energy-power-aware-job-scheduling-resource-management/
- HPPAC @ IPDPS18: "Energy and Power Aware Job Scheduling and Resource Management: Global Survey Initial Analysis"
- DAAC @ SC'18: "Energy and Power Aware Job Scheduling and Resource Management: Global Survey An In-Depth Analysis"

Energy and Power Aware Landscape in System Design

System Design Challenges:

- Peak power demands for future Exascale systems ~20-30MW
- Microarchitecture improvements and high degree of parallelization not sufficient

Participating Sites

<u>Participating Sites</u>:

- CEA (Alternative Energies and Atomic Energy Commission), France
- **CINECA**, Italy
- JCAHPC (University of Tsukuba, University of Tokyo), Japan
- KAUST (King Abdullah University of Science and Technology), Saudi Arabia
- LRZ (Leibniz Supercomputing Centre), Germany
- **RIKEN**, Japan
- STFC (Science and Technology Facilities Council), United Kingdom
- Tokyo Institute of Technology, Japan
- Trinity (Los Alamos and Sandia National Laboratories), United States

Criteria for inclusion in the survey:

- Be actively pursuing an EPA-JSRM solution, and
- Targeting solution on a large-scale HPC system, and
- Be investing in technology development with the intention of using the EPA-JSRM solution in the site's production computing environment.

EPA-JSRM design overview

Survey Questionnaire

Survey Responses to be discussed today...

- Motivation for investing in EPA-JSRM solutions
- Adopted design and implementation details
- Results and challenges
- Next steps

Remaining questions addressed in more detail in the white paper:

• Target infrastructure & workload characteristics

Motivation for investing in JSRM solutions

- Power constraints due to external factors
 - Natural disasters, shortage of electricity
 - Government mandates, limits to operation costs
- Power limits imposed due to <u>internal infrastructure limitations</u>
- Motivation for staying <u>"ahead of the game"</u> while dealing with power constraints
 - Investments in predictability and stability of power consumptions of future systems
- Prioritization of higher compute power by limiting secondary infrastructure costs like cooling, etc.
- Education and evaluation of end users
- <u>Ecological responsibility</u>: desire to "be green"

EPA-JSRM Solutions Adopted

	#	<u>Approach</u>	<u>Challenges</u>
•	A.	Dynamic termination of jobs Job selection based on job size, job length, etc. to shut down RIKEN	Choosing the right metric for terminating jobs
Ī	В.	 Automated reduction of node availability Reduces the theoretical maximum power that can be consumed Resource manager and job scheduler play an important role Tokyo Tech 	 Drop in system availability Already shut-down nodes take time to boot up. This increases queue wait-time for jobs that are waiting for those nodes.
	C.	 Use of power-capping mechanisms Attempts to keep total power consumed below a specific limit. Power cap applied over a specific time-window, e.g. Intel RAPL SLURM – SDPM, Cray's CAPMC KAUST, Tokyo Tech, JCAHPC, Cineca 	Out of band / SLURM SDPM: High performance variability in performance has been observed low queue wait times, coarse grained power limiting.
•	D.	Leveraging p-states (for specific jobs); c-states + s-states (for idle nodes) • SLURM, IBM Load Leveler Platform LSF • CEA, LRZ, STFC	 Design of standardized user interfaces / portable APIs Granularity of p-state change – per process v/s job Platform specific
	E.	Static prediction models System-wide control Implemented within job schedulers, and used history of past runs IBM Load leveler LRZ, STFC	Selection of input parameters for the static model
	F.	 Tagging applications based on power characteristics Mapping of "tags" to performance metrics Tag-values for future budget assignment LRZ. STFC 	 Dependent on user input Need to maintain historical records

From survey responses: Job agnostic management

Optional hints generated by human actors

Power/Energy constraints and optimization settings

From survey responses: Need for job awarenes

Short and Long Term Goals

Short term goals

- To be used in procurement documents
- Strong interest in continuing development and deployment

Long term goals

- Implement power estimator for the jobs
- Invest in extending power capping mechanisms to multiple systems within the same site
- Incorporate facility power and cooling information within the JSRM solution

Next Steps... (input from audience)

	<u>For sites</u>	<u>For vendors</u>		For the community
•	What granularity do you see your site adopting EPA-JSRM solutions – job, node, socket, core, memory, network?	 (Schedulers) Interfaces for collecting power/energy constraints from users / sys admins 	•	Standardization of Interfaces across components Need for additional surveys
•	What opportunity analysis data is needed to encourage adoption of fine-grained control?	 (OS) Kernel modules for controlling power/ energy (System components) Interfaces for setting/ reading power/energy control knobs, MSRs, CSRs 		

Closing thoughts...

- Do get in touch if you would like to participate!
- Contact Info:
- Natalie Bates
 - <u>natalie.jean.bates@gmail.com</u>
- Subscribe to EPA-JSRM mailing list:
 - Google group: epa-jsrm@googlegroups.com